The Water We Drink

NATCHITOCHES WATER SYSTEM Public Water Supply ID: LA1069007

We are pleased to present to you the Annual Water Quality Report for the year 2020. This report is designed to inform you about the quality of your water and services we deliver to you every day (Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien). Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Our water source(s) are listed below:

Source Name	Source Water Type	Source Water Body Name
SIBLEY LAKE INTAKE	SURFACE WATER	SIBLEY LAKE

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

<u>Microbial Contaminants</u> - such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

<u>Inorganic Contaminants</u> - such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

<u>Pesticides and Herbicides</u> – which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

<u>Organic Chemical Contaminants</u> - including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

<u>Radioactive Contaminants</u> - which can be naturally-occurring or be the result of oil and gas production and mining activities.

A Source Water Assessment Plan (SWAP) is now available from our office. This plan is an assessment of a delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area, and a determination of the water supply's susceptibility to contamination by the identified potential sources. According to the Source Water Assessment Plan, our water system had a susceptibility rating of 'HIGH'. If you would like to review the Source Water Assessment Plan, please feel free to contact our office.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health. We want our valued customers to be informed about their water utility. If you have any questions about this report, want to attend any scheduled meetings, or simply want to learn more about your drinking water, please contact MAYOR RONNIE WILLIAMS at 318-352-2772.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. NATCHITOCHES WATER SYSTEM is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

The Louisiana Department of Health and Hospitals - Office of Public Health routinely monitors for constituents in your drinking water according to Federal and State laws. The tables that follow show the results of our monitoring during the period of January 1st to December 31st, 2020. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

In the tables below, you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms, we've provided the following definitions:

<u>Parts per million (ppm) or Milligrams per liter (mg/L)</u> – one part per million corresponds to one minute in two years or a single penny in \$10,000.

<u>Parts per billion (ppb) or Micrograms per liter (ug/L)</u> – one part per billion corresponds to one minute in 2,000 years. or a single penny in \$10,000,000.

<u>Picocuries per liter (pCiL)</u> – picocuries per liter is a measure of the radioactivity in water.

<u>Nephelometric Turbidity Unit (NTU)</u> – nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

<u>Treatment Technique (TT)</u> – an enforceable procedure or level of technological performance which public water systems must follow to ensure control of a contaminant.

<u>Action level(AL)</u> – the concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

<u>Maximum contaminant level (MCL)</u> – the "Maximum Allowed" MCL is the highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.

<u>Maximum contaminant level goal (MCLG)</u> – the "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to human health. MCLGs allow for a margin of safety.

<u>Maximum residual disinfectant level (MRDL)</u> – the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

<u>Maximum residual disinfectant level goal (MRDLG)</u> – the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

<u>Level 1 Assessment</u> - a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

<u>Level 2 Assessment</u> – a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

During the period covered by this report we had the below noted violations of drinking water regulations.

Compliance Period	Analyte	Туре
No Violations Occurred in the Calenc	lar Year 2020	

Our water system tested a minimum of 30 samples per month in accordance with the Total Coliform Rule for microbiological contaminants. With the microbiological samples collected, the water system collects disinfectant residuals to insure control of microbial growth.

Disinfectant	Date	HIGHEST	UNIT	RANGE	MRDL	MRDLG	Typical Source
		RAA					
CHLORAMINE	2020	2.8	nnm	0.19 – 4.7	4	4	Water Additive Used to Control
CHLORAIVIINE	2020	2.0	ppm	0.19 - 4.7	4	4	Microbes
CHLORINE	2020	.01	nnm	0.0 – 0.03	800	800	Water Additive Used to Control
DIOXIDE	2020	.01	ppm	0.0 – 0.03	800	800	Microbes
CHLORITE	2020	0.71	nnm	0.61 – 0.86	1.0	0.8	By-product of Drinking Water
CHLOKITE	2020	0.71	ppm	0.61 - 0.66	1.0	0.6	Disinfection

Disinfectant/ By-product	Result value	Health Effects Language if exceeded				
CHLORINE DIOXIDE MRDL	Highest daily value	Some infants and young children who drink water chlorine dioxide in excess of the MRDL could experience nervous system effects. Similar effects may occur in fetuses of pregnant women who drink water containing chlorine dioxide in excess of the MRDL. Some people may experience anemia.				
CHLORITE MCL	Highest arithmetic average of monthly sample sets (3 samples in distribution system	Some infants and young children who drink water containing chlorite in excess of the MCL could experience nervous system effects. Similar effects may occur in fetuses of pregnant women who drink water containing chlorite in excess of the MCL. Some people may experience anemia.				
BROMATE MCL	Highest running annual arithmetic average, computed quarterly, of monthly	Some people who drink water containing bromate in excess of the MCL over many years may have an increased risk of getting cancer.				

In the tables below, we have shown the regulated contaminants that were detected. Chemical Sampling of our drinking water may not be required on an annual basis; therefore, information provided in this table refers back to the latest year of chemical sampling results.

Regulated Contaminants	Collection Date	Highest Value	Range	Unit	MCL	MCLG	Typical Source	
CARBON TETRACHLORIDE	2/17/2020	0.34	0.34	ppb	5	0	Discharge from chemical plants and other industrial activities.	
FLUORIDE	2/17/2020	0.4	0.4	ppm	4	4	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories	
NITRATE- NITRITE	2/17/2020	0.3	0.3	ppm	10	10	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	

Radionuclides	Collection Date	Highest Value	Range	Unit	MCL	MCLG	Typical Source				
No Detected Res	No Detected Results were Found in the Calendar Year 2020										

Lead and Copper	Date	90 TH Percentile	Range	Unit	AL	Sites Over AL	Typical Source
COPPER, FREE	2018 - 2020	0.3	0 – 1.6	ppm	1.3	1	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
LEAD	2018 - 2020	1	0 – 67	ppb	15	1	Corrosion of household plumbing systems; Erosion of natural deposits

Disinfection Byproducts	Sample Point	Perio d	Highest LRAA	Range	Unit	MCL	MCLG	Typical Source
TOTAL HALOACETIC ACIDS (HAA5)	109 MORGAN LANE	2020	32	27.3 - 37.1	ppb	60	0	By-product of drinking water disinfection
TOTAL HALOACETIC ACIDS (HAA5)	4383 HWY 1	2020	33	27.7 - 42.6	ppb	60	0	By-product of drinking water disinfection
TOTAL HALOACETIC ACIDS (HAA5)	COLLEGE AVE	2020	27	21.7 - 32.4	ppb	60	0	By-product of drinking water disinfection
TOTAL HALOACETIC ACIDS (HAA5)	WTP 24 EFFLUENT	2020	26	21.9 - 27.9	ppb	60	0	By-product of drinking water disinfection
ТТНМ	109 MORGAN LANE	2020	20	14.3 - 22.4	ppb	80	0	By-product of drinking water chlorination
ТТНМ	4383 HWY 1	2020	19	8.3 - 25	ppb	80	0	By-product of drinking water chlorination
ТТНМ	COLLEGE AVE	2020	18	11.3 - 20.4	ppb	80	0	By-product of drinking water chlorination
ТТНМ	WTP 24 EFFLUENT	2020	19	12.1 - 20	ppb	80	0	By-product of drinking water chlorination

Secondary Contaminants	Collection Date	Your Highest Value	Range	Unit	SMCL
ALUMINUM	2/17/2020	1.5	1.5	MG/L	0.2
CHLORIDE	2/17/2020	14	14	ML/L	250
PH	2/17/2020	6.02	6.02	PH	8.5
SULFATE	2/17/2020	43	43	MG/L	250
ZINC	2/17/2020	0.7	0.7	MG/L	5

Unregulated contaminants are those that do not yet have a drinking water standard set by the USEPA. The purpose of monitoring these contaminants is to help the USEPA decide whether the contaminants should have a standard.

Unregulated Contaminants	Collection Date	Average Concentration	Range	Unit	Sample Point
1004 Bromide	3/6/2018	27.7	n/a	ug/L	Sibley Lake Intake
1004 Bromide	6/7/2018	39.5	n/a	ug/L	Sibley Lake Intake
1004 Bromide	9/20/2018	43.5	n/a	ug/L	Sibley Lake Intake
1004 Bromide	12/20/2018	30.2	n/a	ug/L	Sibley Lake Intake

2920 Total Organic	3/6/2018	6730	n/a	ug/L	Sibley Lake Intake
2920 Total Organic	6/7/2018	7650	n/a	ug/L	Sibley Lake Intake
2920 Total Organic	9/20/2018	6460	n/a	ug/L	Sibley Lake Intake
Unregulated Contaminants	Collection Date	Average Concentration	Range	Unit	Sample Point
2920 Total Organic	12/20/2018	5580	n/a	ug/L	Sibley Lake Intake
2456 HAA5	3/6/2018	46.84	6.76 - 50.76	ug/L	WTP 24 Effluent
2457 HAA6Br	3/6/2018	6.76	6.76 - 50.76	ug/L	WTP 24 Effluent
2459: HAA9	3/6/2018	50.76	6.76 - 50.76	ug/L	WTP 24 Effluent
2456 HAA5	6/7/2018	17.94	3.56 - 21.16	ug/L	WTP 24 Effluent
2457 HAA6Br	6/7/2018	3.56	3.56 - 21.16	ug/L	WTP 24 Effluent
2459: HAA9	6/7/2018	21.16	3.56 - 21.16	ug/L	WTP 24 Effluent
2456 HAA5	9/20/2018	17.07	5.01 - 21.41	ug/L	WTP 24 Effluent
2457 HAA6Br	9/20/2018	5.01	5.01 - 21.41	ug/L	WTP 24 Effluent
2459: HAA9	9/20/2018	21.41	5.01 - 21.41	ug/L	WTP 24 Effluent
2456 HAA5	3/6/2018	31.72	7.52 - 38.82	ug/L	4383 Hwy 1
2457 HAA6Br	3/6/2018	7.52	7.52 - 38.82	ug/L	4383 Hwy 1
2459: HAA9	3/6/2018	38.82	7.52 - 38.82	ug/L	4383 Hwy 1
2456 HAA5	6/7/2018	21.1	3.62 - 24.42	ug/L	4383 Hwy 1
2457 HAA6Br	6/7/2018	3.62	3.62 - 24.42	ug/L	4383 Hwy 1
2459: HAA9	6/7/2018	24.42	3.62 - 24.42	ug/L	4383 Hwy 1
2456 HAA5	9/20/2018	23.14	6.56 - 28.86	ug/L	4383 Hwy 1
2457 HAA6Br	9/20/2018	6.56	6.56 - 28.86	ug/L	4383 Hwy 1
2459: HAA9	9/20/2018	28.86	6.56 - 28.86	ug/L	4383 Hwy 1
2456: HAA5	3/6/2018	16.34	3.5 - 19.5	ug/L	College Avenue
2457: HAA6Br	3/6/2018	3.5	3.5 - 19.5	ug/L	College Avenue
2459: HAA9	3/6/2018	19.5	3.5 - 19.5	ug/L	College Avenue
2456: HAA5	6/7/2018	16.34	3.5 - 19.5	ug/L	College Avenue
2457: HAA6Br	6/7/2018	3.5	3.5 - 19.5	ug/L	College Avenue
2459: HAA9	6/7/2018	19.5	3.5 - 19.5	ug/L	College Avenue
2456: HAA5	9/20/2018	17.98	5.24 - 22.54	ug/L	College Avenue
2457: HAA6Br	9/20/2018	5.24	5.24 - 22.54	ug/L	College Avenue
2459:HAA9	9/20/2018	22.54	5.24 - 22.54	ug/L	College Avenue
2456: HAA5	3/6/2018	31.75	4.8 - 36.2	ug/L	109 Morgan Lane
2457: HAA6Br	3/6/2018	4.8	4.8 - 36.2	ug/L	109 Morgan Lane
2459: HAA9	3/6/2018	36.2	4.8 - 36.2	ug/L	109 Morgan Lane
2456: HAA5	6/7/2018	20.8	2.5 - 23.3	ug/L	109 Morgan Lane
			,		
2457: HAA6Br	6/7/2018	2.5	2.5 - 23.3	ug/L	109 Morgan Lane

2456: HAA5	9/20/2018	22.1	5.58 - 26.98	ug/L	109 Morgan Lane
2457: HAA6Br	9/20/2018	5.58	5.58 - 26.98	ug/L	109 Morgan Lane
2459: HAA9	9/20/2018	26.98	5.58 - 26.98	ug/L	109 Morgan Lane
Unregulated Contaminants	Collection Date	Average Concentration	Range	Unit	Sample Point
Manganese	2/7/5019	8.7	8.7-21.8	ug/L	Water treatment Plant
Manganese	5/20/2019	21.8	8.7-21.8	ug/L	Water treatment Plant
Manganese	8/22/19	20.8	8.7-21.8	ug/L	Water treatment Plant
Algal Toxins	7/2/2019	<0.010	n/a	ug/L	Water treatment Plant
Cylindrospermopsin	7/2/2019	<0.030	n/a	ug/L	Water treatment Plant
Algal Toxins	8/22/19	<0.010	n/a	ug/L	Water treatment Plant
Cylindrospermopsin	8/22/19	<0.030	n/a	ug/L	Water treatment Plant
Total Microcystins	8/22/2019	<.10	n/a	ug/L	Water treatment Plant
Anatoxin	9/9/2019	<0.010	n/a	ug/L	Water treatment Plant
Cylindrospermopsin	9/9/2019	<0.030	n/a	ug/L	Water treatment Plant
alpha-BHC	8/22/2019	0.0032u	n/a	ug/L	Water treatment Plant
Chlorpyrifos	8/22/2019	0.0096u	n/a	ug/L	Water treatment Plant
Dimethipin	8/22/2019	0.065u	n/a	ug/L	Water treatment Plant
Ethoprop	8/22/2019	0.022u	n/a	ug/L	Water treatment Plant
Merphos-Oxone	8/22/2019	0.016u	n/a	ug/L	Water treatment Plant
Oxyfluoren	8/22/2019	0.013u	n/a	ug/L	Water treatment Plant
Permethrin	8/22/2019	0.096u	n/a	ug/L	Water treatment Plant
Tebuconazole	8/22/2019	0.065u	n/a	ug/L	Water treatment Plant
Butylated hydroxyanisole	8/22/2019	.0096u	n/a	ug/L	Water treatment Plant
Quinoline	8/22/2019	0.0064u	n/a	ug/L	Water treatment Plant
O- toluidine	8/22/2019	0.0022u	n/a	ug/L	Water treatment Plant
n- Butanol	8/22/2019	0.67u	n/a	ug/L	Water treatment Plant
2-Methoxyethanol	8/22/2019	0.13u	n/a	ug/L	Water treatment Plant
2- Propen-1-ol (Allyl alcohol)	8/22/2019	0.17u	n/a	ug/L	Water treatment Plant
Anatoxin	9/19/2020	<0.010	n/a	ug/L	Water Treatment Plant
Cylindrospermosin	9/19/2020	<0.030	n/a	ug/L	Water Treatment Plant
Total Microcystines	10/2/2020	<0.10	n/a	ug/L	Water Treatment Plant
alpha-BHC	11/1/2020	0.0031u	n/a	ug/L	Water Treatment Plant
Chlorpyrifos	11/1/2020	0.0095u	n/a	ug/L	Water Treatment Plant
Dimethpin	11/1/2020	0.064u	n/a	ug/L	Water Treatment Plant
Ethoprop	11/1/2020	0.0095u	n/a	ug/L	Water Treatment Plant
Merphos-Oxone	11/1/2020	0.022u	n/a	ug/L	Water Treatment Plant
Oxyfluoren	11/1/2020	0.016u	n/a	ug/L	Water Treatment Plant

Permrthin	11/1/2020	0.012u	n/a	ug/L	Water Treatment Plant	
Profenofos	11/1/2020	0.095u	n/a	ug/L	Water Treatment Plant	
Tebuconazole	11/1/2020	0.064u	n/a	ug/L	Water Treatment Plant	
Unregulated Contaminants	Collection Date	Average Concentration	Range	Unit	Sample Point	
Butylated hydroxyanisole	11/1/2020	0.0095u	n/a	ug/L	Water Treatment Plant	
Quinoline	11/1/2020	0.0064u	n/a	ug/L	Water Treatment Plant	
O-touidine	11/1/2020	0.0022u	n/a	ug/L	Water Treatment Plant	
N-Butanol	11/1/2020	0.67u	n/a	ug/L	Water Treatment Plant	
2-Methoxyethanol	11/1/2020	.13u	n/a	ug/L	Water Treatment Plant	
2-Propen-1-ol (allyl alcohol)	11/1/2020	0.17u	n/a	ug/L	Water Treatment Plant	
Germanium	11/1/2020	0.10u	n/a	ug/L	Water Treatment Plant	
Manganese	11/1/2020	8.5	n/a	ug/L	Water Treatment Plant	

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Additional Required Health Effects Language:

95th Percentile Health Effects Language:

Infants and children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4761).

Fecal coliforms and E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a special health risk for infants, young children, some of the elderly, and people with severely compromised immune systems.

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially-harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.

There are no Additional Required Health Effects Violation Notices:

We found coliforms, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year two Level 2 assessment(s) were required to be completed for our water system. Two Level 2 assessment(s) were completed. In addition, we were required to take two corrective actions and we completed two of these actions.

DISINFECTION: The City of Natchitoches uses Chloramines as a disinfectant. We monitor 45 sites throughout the system.

Chloramines were used to control microbes.

Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system. The major sources of turbidity include soil runoff.

Regulated Contaminates	Collection Date	Highest Value	Range	Unit	MCL	Typical Source
Turbidity	1/2020 – 12/2020	.29	0.05 – 0.29	NTU	0.30	Soil Runoff

Regulated Contaminates	Collection Date	Lowest Percentage Value	Range	Unit	MCL	Typical Source
Turbidity	1/2020 – 12/2020	100%	100 - 100	NTU	0.3	Soil Runoff

NOTE: Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that cause symptoms, such as nausea, cramps, diarrhea, and associated headaches.

Regulations on Turbidity Limits:

*from 40 CFR, Part 141.73 and 141.173 - Turbidity requirements for Surface Water Systems that filter by:

Conventional filtration treatment or direct filtration: the turbidity level of representative samples of a system's filtered water must be less than or equal to a 0.3 NTU in at least 95 percent of the measurements taken. The turbidity level of representative samples of a system's filtered water must not exceed 1 NTU.

Thank you for allowing us to continue to provide your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers.

We at NATCHITOCHES WATER SYSTEM work around the clock to provide top quality drinking water to every tap. We ask that all of our customers help us protect and conserve our water resources, which are the heart of our community, our way of life, and our children's future. Please call our office at 357-3850 if you have any questions.